If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x^2+4x)/(x^2+x)=0
Domain of the equation: (x^2+x)!=0We multiply all the terms by the denominator
x∈R
(2x^2+4x)=0
We get rid of parentheses
2x^2+4x=0
a = 2; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·2·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*2}=\frac{-8}{4} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*2}=\frac{0}{4} =0 $
| 5.3+x=1875 | | x*X*X+4X-19=0 | | 2/4=x | | x/32=4/9 | | 1/4z+9=-5 | | 2/3(6h-12)=12 | | 6y+7-3y+3=3y+10 | | 5z/2=105/6 | | 0.9x-20=2/3x | | 1/4n+5=51/2n | | (4x-9)(7x+5)=0 | | 0=x+1/x-2 | | 4q-10=0 | | (4x−9)(7x+5)=0 | | 4q-10=0.75 | | x+1-4x=10 | | 10(r+9)-2(-8+9r)=0 | | -8(4p+6)=-6p+30 | | x+1.66667x=49 | | 2x+1=x−3 | | 2(n+1)=6(4n+4)+4 | | 5z-37=4z-6-10 | | x+1.66667x=50 | | 4y-2y=40 | | u^2+4u-2=0 | | 23+24.75x=53+17.25x | | x2+-3x-1=6 | | 7-c1=4c12 | | 13=-10+y/8 | | -4.28+0.7x=1-3.7x | | x-15=21+10x | | 3v^2-6=2v^2+10 |